
#6: Camera Perspecctive,
Viewing, and Culling

CSE167: Computer Graphics
Instructor: Ronen Barzel

UCSD, Winter 2006

17

View Projections
 Transform from camera space to normalized view space

 Two basic kinds:

 Perspective projection: make things farther away seem smaller
• Most common for computer graphics
• Simple model of human eye, or camera lens
• (Actually, a model of an ideal pinhole camera)

 Orthographic projection: simply flatten, without any perspective
• Used for architectural or plan views (top,side,front)
• Not used for realistic rendering

 Others, more complex:
 lens, with focus & depth of field
 fish-eye lens
 dome projection
 computations don’t easily fit into basic hardware rendering pipeline

18

Perspective Projection
 Things farther away get smaller
 Parallel lines no longer parallel: vanishing point
 Discovery/formalization attributed to

Filippo Brunelleschi in the early 1400’s
 Earliest example: La Trinitá (1427) by Masaccio

19

Perspective Projection

 Assume that we have “film” at distance d from the eye
 Distant tall object projects to same height as near small object
 By similar triangles, we have:

 Notice: divide by z
 not a linear operation!

!y

d
=
y1

z1

=
y2

z2

Giving the transformation relations:

!y = d
y

z
,!!!!!! !x = d

x

z

21

Perspective Projection

 Not a linear equation
 not an affine transformation
 doesn’t preserve angles-but does preserve straight lines
 Note: it will blow up if z=0 (object at the eye)

 Z maps to pseudo-distance
 necessary to preserve straight lines
 maintains depth order when B<0: if z1<z2 then z’1<z’2

 We’ll come up with values for d1, d2, A, and B, in a little while
 will choose them to keep area of interest within -1 to 1 in x,y,z

 Ugly formula. Make it work with homogeneous matrices…

!x

!y

!z

"

#

$
$
$

%

&

'
'
'

=

d
1

x

z

d
2

y

z

A +
B

z

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

22

Homogeneous Perspective Projection

 The homogeneous perspective projection matrix. Notice the last row!

 Multiply it by a homogeneous point

 Notice that the result doesn’t have w=1. So divide by w:

P =

d
1

0 0 0

0 d
2
0 0

0 0 A B

0 0 1 0

!

"

#
#
#
#

$

%

&
&
&
&

!x

!y

!z

!w

"

#

$
$
$
$

%

&

'
'
'
'

= P

x

y

z

1

"

#

$
$
$
$

%

&

'
'
'
'

=

d
1
x + 0 + 0 + 0

0 + d
2
y + 0 + 0

0 + 0 + Az + B

0 + 0 + z + 0

"

#

$
$
$
$

%

&

'
'
'
'

=

d
1
x

d
2
y

Az + B

z

"

#

$
$
$
$

%

&

'
'
'
'

!x

!y

!z

!w

"

#

$
$
$
$

%

&

'
'
'
'

(

!x / !w

!y / !w

!z / !w

!w / !w

"

#

$
$
$
$

%

&

'
'
'
'

=

d
1
x / z

d
2
x / z

A + B / z

1

"

#

$
$
$
$

%

&

'
'
'
'

23

Homogeneous Perspective Transform

 As always, there’s some deep math behind this…
 3D projective space

 For practical purposes:
 Use homogeneous matrices normally
 Modeling & viewing transformations use affine matrices

• points keep w=1
• no need to divide by w when doing modeling operations or

transforming into camera space
 Projection transform uses perspective matrices

• w not always 1
• divide by w after performing projection transform
• AKA perspective divide, homogeneous divide

 GPU hardware does this

27

View Volume
 A 3D shape in world space that represents the volume viewable by

the camera

28

Perspective view volume

 A perspective camera with a rectangular image describes a pyramid
in space
 The tip of the pyramid is at the eye point
 The pyramid projects outward in front of the camera into space
 Nominally the pyramid starts at the eye point and goes out infinitely…
 But, to avoid divide-by-zero problems for objects close to the camera

• introduce a near clipping plane
• objects closer than that are not shown
• chops off the tip of the pyramid

 Also, to avoid floating-point precision problems in the Z buffer
• introduce a far clipping plane
• objects beyond that are not shown
• defines the bottom of the pyramid

 A pyramid with the tip cut off is a truncated pyramid, AKA a frustum
 The standard perspective view volume is called the view frustum

29

Parameterized by:
• left,right,top,bottom (generally symmetric)
• near,far
Or, when symmetric, by:
• Field of view (FOV), aspect ratio
• near,far
• Aspect ratio is the x/y ratio of the final displayed image. Common values:

• 4/3 for TV & old movies; 1.66 for cartoons & European movies; 16/9 for American movies &
HDTV; 2.35 for epic movies

View Frustum

-z
FOV

y

z=-near

z=-far

y=top

aspect ratio=
right ! left

top ! bottom
=
right

top

tan(FOV / 2) =
top

near

30

Frustum Projection Matrix
 We can think of the view frustrum as a distorted cube,

since it has six faces, each with 4 sides
 The perspective projection warps this to a cube.

 Everything inside gets distorted accordingly
 By setting the parameters properly, we get the cube to range from

-1 to 1 in all dimensions: i.e., normalized view space

Ppersp (FOV ,aspect,near, far) =

1

aspect ! tan(FOV / 2)
0 0 0

0
1

tan(FOV / 2)
0 0

0 0
near + far

near " far

2 !near ! far

near " far

0 0 "1 0

#

$

%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(

37

The complete transform
 Composing the modeling matrix M, the camera matrix C,

the projection matrix P, and the viewport matrix D, we
have, for some point p:

pixel = (D P C-1 M) p

38

Spaces in OpenGL
 OpenGL separates it into:

 MODELVIEW=C-1M
• It’s up to you to compose the camera and model transforms.

Typically start with the inverse camera transform, then push and pop
model matrix values on top of it. gluLookAt() is a utility to do a look-at
transformation.

 PROJECTION=P
• OpenGL provides utility routines to set the projection matrix:

• glFrustum() lets you define the perspective view volume based on coordinates of
the frustum

• glPerspective() lets you specify the FOV, aspect, near clip and far clip distances
• glOrtho() lets you specify a orthographic viewing transformation

 Viewport=D
• OpenGL provides a glViewport() routine to set the viewport

