
Projection Transformation

Projection – map the object  from 3D space 
to 2D screen
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Perspective: gluPerspective() Parallel: glOrtho()



Viewing Frustum

3D counterpart of 2D world clip window

Objects outside the frustum are clipped
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Near and Far Clipping Planes

Only objects between near and far planes are 
drawn 

Near plane + far plane + field of view = 
Viewing Frustum
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Field of View 

Determine how much of the world is taken into the 
picture  

The larger is the field view, the smaller is the object 
projection size
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gluPerspective(fovy, aspect, near, far)

Aspect ratio is used to calculate the 
window width
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glFrustum(left, right, bottom, top, near, far)

Or You can use this function in place of 
gluPerspective()
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Perspective Projection 

Side view: 
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Perspective Projection (2)

Same for x.   So we have:
x’ =  x x  d / -z 
y’ =  y x d / - z 
z’ = -d

Put in a matrix form:

x’ 1    0    0      0          x
y’ =      0    1    0     0           y
z’  0    0    1      0          z
w           0    0  (1/-d)  0         1

OpenGL assume d = 1, i.e. the image plane is at z = -1  



Perspective Projection (3)
We are not done yet. We want to somewhat keep the z 
information so that we can perform depth comparison

Use pseudo depth – OpenGL maps the near plane to 1, and far 
plane to -1 

Need to modify the projection matrix: solve a and b 
x’           1    0    0       0            x 
y’   =      0    1    0       0            y
z’           0    0    a        b           z
w            0    0  (1/-d)   0           1
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Z = 1        z = -1 How to solve a and b?



Perspective Projection (4)

Solve a and b

(0,0,1)  =  M  x  (0,0,-near)
(0,0,-1) =  M x  (0,0,-far)

a =  -(far+near)/(far-near)
b  =   (-2 x far x near) / (far-near)

x’           1    0    0       0         x 

y’   =      0    1    0       0         y

z’           0    0    a        b         z

w            0    0  (1/-d)   0        1
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Verify this! 



Perspective Projection (5)
Not done yet. OpenGL also normalizes the x and y 
ranges of the viewing frustum to [-1, 1] (translate 
and scale)

And takes care the case that eye is not at the center 
of the view volume (shear)
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Perspective Projection (6)

Final Projection Matrix:

x’           2N/(xmax-xmin)    0    (xmax+xmin)/(xmax-xmin)       0         x 

y’   =      0    2N/(ymax-ymin)    (ymax+ymin)/(ymax-ymin)      0         y

z’           0          0                 -(F + N)/(F-N)            -2F*N/(F-N)        z

w’            0         0                 -1                                            0        1 

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane



Perspective Projection (7)

After perspective projection, the viewing frustum is 
also projected into a canonical view volume (like in 
parallel projection)
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