i Projection Transformation

= Projection — map the object from 3D space
to 2D screen

D\

Perspective: gluPerspective() Parallel: glOrtho()

i Viewing Frustum

= 3D counterpart of 2D world clip window

Near plane

\Far plane

Viewing Frustum

= Objects outside the frustum are clipped

i Near and Far Clipping Planes

= Only objects between near and far planes are
drawn

Near plane

Far plane

= Near plane + far plane + field of view =
Viewing Frustum

i Field of View

= Determine how much of the world iIs taken into the

picture
center of projection

field of view \

= The larger is the field view, the smaller is the object
projection size

i gluPerspective(fovy, aspect, near, far)

= Aspect ratio Is used to calculate the
window width

Aspect=w/h

i glFrustum(left, right, bottom, top, near, far)

= Or You can use this function in place of
gluPerspective()

right

bottom
/

near far

i Perspective Projection

= Side view:

Projection plane

o Based on similar triangle
(x,y',z')
000 1 Y ooz
d

d
/ -Z) Y=y Xx —
-Z

Eye (projection center)

i Perspective Projection (2)

= Same for Xx. So we have:

X = xxd/-z
y=yxd/-z
Z = -d

= Put in a matrix form:

X' 1 0 O 0 X
y =10 1 0 O y
Z' 0O 0 1 O Z
w 0O 0 (1/d o0 1

= OpenGL assume d =1, i.e. the image planeisatz = -1

i Perspective Projection (3)

We are not done yet. We want to somewhat keep the z
information so that we can perform depth comparison

= Use pseudo depth — OpenGL maps the near plane to 1, and far
plane to -1

= Need to modify the projection matrix: solve a and b

X' 1 0 O 0 X
y | = O 1 O 0 y
Z 0O 0 a b Z

W O 0 (1/d) O 1

How to solve a and b?

i Perspective Projection (4)

= Solveaandb

X’ 1 0 O 0 X
y|= |0 1 0 0 y
Z O 0 a b Z
w 0 0 (1/d) O 1
O (O,O,l)T: M X (O,O,-near)T '\
(0,0,-1) = M x (0,0,-far) ' M
= a= -(far+near)/(far-near) . Verify this!

b = (-2 x far x near) / (far-near)

i Perspective Projection (5)

= Not done yet. OpenGL also normalizes the x and y
ranges of the viewing frustum to [-1, 1] (translate

and scale) 0

far

e
eye

(top view)

('1’ '1)

= And takes care the case that eye is not at the center
of the view volume (shear)

i Perspective Projection (6)

= Final Projection Matrix:

X’ 2N/(xmax-xmin) 0 (xmax+xmin)/(xmax-xmin) 0 X
y = 0 2N/(ymax-ymin) (ymax+ymin)/(ymax-ymin) 0 y
Z 0 0 -(F + N)/(F-N) -2F*N/(F-N) z
w’ 0 0 -1 0 1

|

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

i Perspective Projection (7)

= After perspective projection, the viewing frustum is
also projected into a canonical view volume (like In
parallel projection)

(1, 1, -1)

P

=

(-1, -1, 1)

Canonical View Volume

