
Looking down the z-axis (arrow).
We will project geometry onto a
“near plane” (black rectangle),
which corresponds to the screen.

Consider, how this projection
affects x and y coordinates of
rendered geometry....

x and y values are simply scalar
multiples of their original values!

So let’s try to figure out how
much scaling occurs!

In OpenGL, the eye is at (0,0,0),
and we specify the distance to
the projection plane (i.e., the
“near”plane).

Use simple, high school geometry!
 (similar triangles)

near distance (n)

geometry’s z-value (z)

geometry’s
 y-value (y)

(or equivalently
its x-value)

new
value

y’

y’ y
n z=

x’ x
n z=

That suggests a matrix like:

n 0 0 0
0 n 0 0
0 0 n 0
0 0 1 0

()
n 0 0 0 x nx nx/z
0 n 0 0 y ny ny/z
0 0 n 0 z nz n
0 0 1 0 1 z 1

() () () ()==

n 0 0 0
0 n 0 0
0 0 n 0
0 0 1 0

()
There’s two problems with this matrix!

 (Q: Anyone have ideas what?)

Problem 1) It throws away all depth information in the scene! (z-values)
 This means there’s absolutely no way to tell which object
 is on top in any pixel where multiple objects overlap.

Problem 2) It doesn’t guarantee all geometry in the volume will project
 into the unit cube (where x, y, z ∈ [-1...1]). Remember, we
 want values in this range after projection (”normalized
 device coordinates”).

a 0 0 0
0 b 0 0
0 0 c d
0 0 e 0

()
In order to address this problem we start with a matrix of this form:

and fill in the values for a, b, c, d, and e. Note, the added non-zero entry d
allows some preservation of depth differentials. We need not add other
non-zero entries in the 3rd row, since the final z-value should not depend
on the input x any values!

a 0 0 0
0 b 0 0
0 0 c d
0 0 e 0

()So our desired
matrix is of this
form:

First, realize this is a system of
4 equations with 5 unknowns.
(We’ll get a set of solutions instead of a unique one!)

 Fix this by setting e = -1.

Then, let’s consider what happens when we apply this matrix to important
points.

Q: If we apply the projection matrix to (0,0,-n,1) with this matrix, what should
 be the z-value of the projected point?? (Remember the projection matrix
 leaves points in “normalized device coordinates,” where x,y,z ∈ [-1...1].)

A: (0,0,n,1) should map to (0,0,-1,1) in normalized device coordinates!

Q: If we apply the projection matrix to (0,0,-f,1) with this matrix, what should
 be the z-value of the projected point??

A: (0,0,f,1) should map to (0,0,1,1) in normalized device coordinates!

a 0 0 0
0 b 0 0
0 0 c d
0 0 -1 0

()
0
0
-n
1

()=

 0
 0
-cn+d
 n

()
a 0 0 0
0 b 0 0
0 0 c d
0 0 -1 0

()
0
0
-f
1

()=

 0
 0
-cf+d
 f

()

=

 0
 0
-c + d/n
 1

()
=

 0
 0
-c + d/f
 1

()

=

=()

()
0
0
1
1

0
0
-1
1

So, -cn+d = -n, and -cf+d = f. Subtract the second from the first: -c(n-f) = -n-f

Thus, c = (n+f)/(n-f).

Also, -c + d/n = -1, and -c + d/f = 1. Subtract the second from the first:
d/n - d/f = -2 (df-nd)/(nf) = -2. Thus, d = 2nf/(n-f).

Now, let’s tackle a and b.

We can do the same thing,
plug in important points that
project to the boundaries of
the near plane!

To find what this point is,
consider the view on the left
(and the simplified view below).

a 0 0 0
0 b 0 0
0 0
0 0 -1 0

()
 0
 n tan(θ/2)

 -n
 1
()=

 0
bn tan(θ/2)

 (a mess)
 n

() =

0
1
-1
1

()
This shows us that b = 1/tan(θ/2). Simplifying, and calling θ by the name
(fovy) we pass it to gluPerspective() with, we get: b = cot()

angle θ
(field of view in y)

visible region of
the near plane

point on the
volume boundary
(0, n*tan(θ/2), -n, 1)

θ/2

distance to near plane (n)

distance to
point on
boundary
of near
plane (y)

Basic trigonometry says:
 y = n tan(θ/2),

So the point (0, n tan(θ/2), -n, 1) is a
boundary condition, and should project
to (0, 1, -1, 1)

n+f
n- f

2nf
n- f

=

 0
 b tan(θ/2)

 (a mess)
 1

()
fovy
 2

For computing a, the situation
and math is almost identical....

Except the angle θ might be
different if the window’s aspect
ratio is not 1 (i.e., if the window
is not square)!

Remember the aspect ratio is:
 width / height

a 0 0 0
0 b 0 0
0 0
0 0 -1 0

() = =

1
0
-1
1

()
This shows us that a = 1/(artan()). Simplifying, we get:

 a =

angle θ
(field of view in x)

visible region of
the near plane

point on the
volume boundary
(n*tan(θ/2), 0, -n, 1)

Remember: y = n tan(), this means: x = n tan(),

But since we don’t have fovx (remember we specify only fovy when calling
gluPerspective()), we can compute it based on fovy and the aspect ratio (ar)

It turns out that the boundary point is x = n ar tan(). So, our boundary
point is: (n ar tan(), 0, -n, 1)

n+f
n- f

2nf
n- f

fovy
 2

fovy
 2

fovx
 2

fovy
 2

()
 n ar tan()

 0
 -n
 1

fovy
 2

()
 a*ar*tan()

 0
 (a mess)
 1

fovy
 2 a*n*ar*tan()

 0
 (a mess)
 n

fovy
 2

()=

fovy
 2

fovy
 2cot()

ar

