
Projection Transformation

Projection – map the object from 3D space
to 2D screen

x

y

z

x

y

z

Perspective: gluPerspective() Parallel: glOrtho()

Viewing Frustum

3D counterpart of 2D world clip window

Objects outside the frustum are clipped

x

y

z

Near plane Far plane

Viewing Frustum

Near and Far Clipping Planes

Only objects between near and far planes are
drawn

Near plane + far plane + field of view =
Viewing Frustum

x

y

z

Near plane Far plane

Field of View

Determine how much of the world is taken into the
picture

The larger is the field view, the smaller is the object
projection size

x

y

z

y

z θ

field of view

center of projection

gluPerspective(fovy, aspect, near, far)

Aspect ratio is used to calculate the
window width

x

y

z

y

z fovy

eye

near farAspect = w / h

w

h

glFrustum(left, right, bottom, top, near, far)

Or You can use this function in place of
gluPerspective()

x

y

z

left

right
bottom

top

near far

Perspective Projection

Side view:
x

y

z

(0,0,0)

d

Projection plane

Eye (projection center)

(x,y,z)

(x’,y’,z’)

-z

z

y
Based on similar triangle:

y -z
y’ d

d
Y’ = y x

-z

=

Perspective Projection (2)

Same for x. So we have:
x’ = x x d / -z
y’ = y x d / - z
z’ = -d

Put in a matrix form:

x’ 1 0 0 0 x
y’ = 0 1 0 0 y
z’ 0 0 1 0 z
w 0 0 (1/-d) 0 1

OpenGL assume d = 1, i.e. the image plane is at z = -1

Perspective Projection (3)
We are not done yet. We want to somewhat keep the z
information so that we can perform depth comparison

Use pseudo depth – OpenGL maps the near plane to 1, and far
plane to -1

Need to modify the projection matrix: solve a and b
x’ 1 0 0 0 x
y’ = 0 1 0 0 y
z’ 0 0 a b z
w 0 0 (1/-d) 0 1

x

y
z

Z = 1 z = -1 How to solve a and b?

Perspective Projection (4)

Solve a and b

(0,0,1) = M x (0,0,-near)
(0,0,-1) = M x (0,0,-far)

a = -(far+near)/(far-near)
b = (-2 x far x near) / (far-near)

x’ 1 0 0 0 x

y’ = 0 1 0 0 y

z’ 0 0 a b z

w 0 0 (1/-d) 0 1

T

T

T

T M

Verify this!

Perspective Projection (5)
Not done yet. OpenGL also normalizes the x and y
ranges of the viewing frustum to [-1, 1] (translate
and scale)

And takes care the case that eye is not at the center
of the view volume (shear)

x

y
z

Z = 1 z = -1 (-1, -1)

(1, 1)

eye

near

far

(top view)

Perspective Projection (6)

Final Projection Matrix:

x’ 2N/(xmax-xmin) 0 (xmax+xmin)/(xmax-xmin) 0 x

y’ = 0 2N/(ymax-ymin) (ymax+ymin)/(ymax-ymin) 0 y

z’ 0 0 -(F + N)/(F-N) -2F*N/(F-N) z

w’ 0 0 -1 0 1

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

Perspective Projection (7)

After perspective projection, the viewing frustum is
also projected into a canonical view volume (like in
parallel projection)

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume

x

y

z

