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Perspective Projection onto View Plane
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Via similar triangles (note z < 0):
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Perspective Transformation

• Our perspective transformation is not linear (we can
not describe it with a (simple) matrix).

• We exploit the use of homogeneous coordinates

(x, y, z, w) ≡ (x/w, y/w, z/w,1) (w 6= 0).

• We then create the following perspective matrix
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After transforming our point, we perform a homo-
geneous perspective division:
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Loss of Depth Information


d 0 0 0
0 d 0 0
0 0 d 0
0 0 −1 0



x
y
z
1

 =


xd
yd
zd
−z

 7→

−xd
z
−yd
z
−d
1


• Our perspective matrix is (unfortunately) singular

(obvious from column of 0’s).

• Matrix is not invertible (3-D objects flatted to 2-D).

• Depth information is lost (we need depth informa-

tion for visibility sorting).



An Invertible Perspective Matrix

We alter our perspective transformation by choosing

some non-zero values for a and b and defining the fol-

lowing transformation:
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Relative depth information will be preserved in the third

component as a (non-linear) function f of the true

depth z :

f(z) = −a−
b

z
.



Near and Far Clipping Planes

The user specifies the distance N > 0 to the near clipping plane
and the distance F > N to the far clipping plane.
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We choose a and b so that the near and far planes are mapped to
−1 and +1 respectively:

f(−N) = −a+
b

N
= −1

f(−F ) = −a+
b

F
= +1.

Thus we get a = −N+F
F−N and b = −2NF

F−N .



Perspective View Volume
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The simplest (and most common) perspective transfor-
mation defines the view axis to pierce the center of the
view volume. We warp the truncated pyramid into the
canonical clipping volume (CCV).
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Mapping to CCV Corners

We project onto the w × h near plane as follows:
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After perspective division we get
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Note that the points (±w/2,±h/2,−N) get mapped to the points

(±1,±1,−1). Although its not obvious by inspection, the points

(±W/2,±W/2,−F ) get mapped to the points (±1,±1,+1), where

W and H are the corresponding dimensions of the far plane.



Field of View and Aspect Ratio

We can solve for the 2N/h term based on the verti-

cal field of view angle θ. The 2H/h term then can be

determined from the desired aspect ratio a = w/h :
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Perspective Projection Transformation

Ppersp(θ, α,N, F ) =
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• θ : field of view angle along the vertical axis

– Large for “fish-eye” lens.

– Small for “telephoto” lens.

• a : aspect ratio of projection window

– Often chosen to match the aspect ratio of the

viewport (else spheres are warped into ellipsoids).

• N > 0 : distance to the near clipping plane

• F > N : distance to the far clipping plane



gluPerspective(fovy, aspect, zNear, zFar)

Here is an example that initializes the OpenGL projec-

tion matrix with a perspective transformation that uses

θ = 40◦, α = 1, N = hither, and F = yon.

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(40.0, 1.0, hither, yon);

• zNear must be strictly positive (not too close to 0).

• zFar must be greater than zNear but not overly so.

• Wisdom on how to choose these will be revealed

when we talk about z-buffering.



Perspective View Frustum
glFrustum
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A more general specification of a perspective projection transfor-
mation (view pyramid not necessarily symmetric about view axis).
The near plane becomes the view plane where the boundaries of
a rectangle control the shape of the pyramid.
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