View Volumes

» Define 3D volume seen by camera

Perspective view volume Orthographic view volume

Camera coordinates Camera coordinates
W Vv
oA
\iﬁj
ufﬁ iﬁ??“nx
ﬁ“xi }(I\ ™~
, \ *{f \\\\]
‘"x @ \\\
H‘x x”f
o y N 0
X X
World coordinates World coordinates

Perspective View Volume

General view volume

Camera
coordinates ,

==ticht

» Defined by 6 parameters, in camera coordinates
Left, right, top, bottom boundaries
Near, far clipping planes

» Clipping planes to avoid numerical problems
Divide by zero
Low precision for distant objects

» Usually symmetric, i.e., left=-right, top=-bottom

Perspective View Volume

Symmetrical view volume

y=top
q FOV ‘

v

/ z
ZTM
z=-far
» Only 4 parameters
Vertical field of view (FOV) aspect ratio=— ight —left _ right
))) top — bottom top
Image aspect ratio (width/height)
. Fov 12)="P
Near, far clipping planes tan edr

Canonical View Volume

» Projection matrix is set such that

User defined view volume is transformed into canonical
view volume,i.e., cube [-1,1]x[-1,1]x[-1,1]
Multiplying vertices of view volume by projection matrix and
performing homogeneous divide yields canonical view
volume

» Perspective and orthographic projection are treated

exactly the same way

» Canonical view volume is last stage in which
coordinates are in 3D

» Next step is projection to 2D frame buffer

9

Projection Matrix

(right o, maar)
et oo, e ar) / iright iop far)

Camera coordinates

|||||||

I Persprotive Yiew Yoleme Crthagraphic View Valuma

Projection matrix
l oz

¥

Canonical view volume 1f

-1.-1.-1)

Clipping o

10

Perspective Projection Matrix

» General view frustum with 6 parameters

Camera
coordinates

f=-hear 7=-far

==right

Persp(left, right, top, bottom, near, far) =

2near 0 right+left 0
right—left right—left
0 2near top+bottom 0
top—bottom top—bottom
0 0 —(far+near) —2far-near
far—near far—near
0 0 —1 0

11

Perspective Projection Matrix

» Symmetrical view frustum with field of view, aspect
ratio, near and far clip planes

Camera q
coordinates

Ppersp (FOV, aSp€Cl, near, fa}”) =

12

y=top

FOV ‘

/

Z=-near

1

aspect - tan(FOV [2)

0

z=-far

1

tan(FOV /2)

0

0

0 0

0 0
near + far 2 -near - far
near — far near — far

| 0

The Complete Transform

» Mapping a 3D point in object coordinates to pixel
coordinates:

p' = DPC 'Mp
Object space

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix

15

The Complete Transform

» Mapping a 3D point in object coordinates to pixel
coordinates:

p' = DPC Mp
Object space
World space

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix

16

The Complete Transform

» Mapping a 3D point in object coordinates to pixel
coordinates:

p' = DPC Mp
Object space

World space
Camera space

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix

17

The Complete Transform

» Mapping a 3D point in object coordinates to pixel
coordinates:

p = Dchlhﬂp
Object space
World space
Camera space
Canonical view volume

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix

18

The Complete Transform

» Mapping a 3D point in object coordinates to pixel
coordinates: p =

19

C: camera matrix
P: projection matrix

D: viewport matrix

DP

Clhﬂp
Object space

World space
Camera space

Canonical view volume

Image space
M: Object-to-world matrix

The Complete Transform

» Mapping a 3D point in object coordinates to pixel

coordinates:

/

p:

M: Object-to-world matrix
C: camera matrix

P: projection matrix

p' = DPC 'Mp

7!

'
Y
o

wl

D: viewport matrix

20

Pixel coordinates:

x//w/
yl/wl

The Complete Transform in OpenGL

» Mapping a 3D point in object coordinates to pixel
coordinates:

OpenGL GL_MODELVIEW matrix

p' = D;-p
OpenGL GL_PROJECTION matrix

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix

21

The Complete Transform in OpenGL
» GL_MODELVIEW, C-'M

Defined by programmer

» GL_PROJECTION, P

Utility routines to set it by specifying view volume:
glFrustum(), glPerspective(), glOrtho()

Do not use utility functions in homework project 2

You will implement a software renderer in project 3, which
will not use OpenGL

» Viewport, D
Specify implicitly via glViewport()
No direct access with equivalent to GL_MODELVIEW or
GL PROJECTION

22

