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View Projections
 Transform from camera space to normalized view space

 Two basic kinds:

 Perspective projection: make things farther away seem smaller
• Most common for computer graphics
• Simple model of human eye, or camera lens
• (Actually, a model of an ideal pinhole camera)

 Orthographic projection: simply flatten, without any perspective
• Used for architectural or plan views (top,side,front)
• Not used for realistic rendering

 Others, more complex:
 lens, with focus & depth of field
 fish-eye lens
 dome projection
 computations don’t easily fit into basic hardware rendering pipeline
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Perspective Projection
 Things farther away get smaller
 Parallel lines no longer parallel: vanishing point
 Discovery/formalization attributed to

Filippo Brunelleschi in the early 1400’s
 Earliest example: La Trinitá (1427) by Masaccio



19

Perspective Projection

 Assume that we have “film” at distance d from the eye
 Distant tall object projects to same height as near small object
 By similar triangles, we have:

 Notice: divide by z
 not a linear operation!
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Perspective Projection

 Not a linear equation
 not an affine transformation
 doesn’t preserve angles-but does preserve straight lines
 Note: it will blow up if z=0 (object at the eye)

 Z maps to pseudo-distance
 necessary to preserve straight lines
 maintains depth order when B<0:  if z1<z2 then z’1<z’2

 We’ll come up with values for d1, d2, A, and B, in a little while
 will choose them to keep area of interest within -1 to 1 in x,y,z

 Ugly formula.  Make it work with homogeneous matrices…
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Homogeneous Perspective Projection

 The homogeneous perspective projection matrix.  Notice the last row!

 Multiply it by a homogeneous point

 Notice that the result doesn’t have w=1.  So divide by w:
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Homogeneous Perspective Transform

 As always, there’s some deep math behind this…
 3D projective space

 For practical purposes:
 Use homogeneous matrices normally
 Modeling & viewing transformations use affine matrices

• points keep w=1
• no need to divide by w when doing modeling operations or

transforming into camera space
 Projection transform uses perspective matrices

• w not always 1
• divide by w after performing projection transform
• AKA perspective divide, homogeneous divide

 GPU hardware does this
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View Volume
 A 3D shape in world space that represents the volume viewable by

the camera
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Perspective view volume

 A perspective camera with a rectangular image describes a pyramid
in space
 The tip of the pyramid is at the eye point
 The pyramid projects outward in front of the camera into space
 Nominally the pyramid starts at the eye point and goes out infinitely…
 But, to avoid divide-by-zero problems for objects close to the camera

• introduce a near clipping plane
• objects closer than that are not shown
• chops off the tip of the pyramid

 Also, to avoid floating-point precision problems in the Z buffer
• introduce a far clipping plane
• objects beyond that are not shown
• defines the bottom of the pyramid

 A pyramid with the tip cut off is a truncated pyramid, AKA a frustum
 The standard perspective view volume is called the view frustum
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Parameterized by:
• left,right,top,bottom (generally symmetric)
• near,far
Or, when symmetric, by:
• Field of view (FOV), aspect ratio
• near,far
• Aspect ratio is the x/y ratio of the final displayed image. Common values:

• 4/3 for TV & old movies; 1.66 for cartoons & European movies; 16/9 for American movies &
HDTV; 2.35 for epic movies

View Frustum
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Frustum Projection Matrix
 We can think of the view frustrum as a distorted cube,

since it has six faces, each with 4 sides
 The perspective projection warps this to a cube.

 Everything inside gets distorted accordingly
 By setting the parameters properly, we get the cube to range from

-1 to 1 in all dimensions: i.e., normalized view space
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The complete transform
 Composing the modeling matrix M, the camera matrix C,

the projection matrix P, and the viewport matrix D, we
have, for some point p:

pixel = (D P C-1 M) p
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Spaces in OpenGL
 OpenGL separates it into:

 MODELVIEW=C-1M
• It’s up to you to compose the camera and model transforms.

Typically start with the inverse camera transform, then push and pop
model matrix values on top of it.  gluLookAt() is a utility to do a look-at
transformation.

 PROJECTION=P
• OpenGL provides utility routines to set the projection matrix:

• glFrustum() lets you define the perspective view volume based on coordinates of
the frustum

• glPerspective() lets you specify the FOV, aspect, near clip and far clip distances
• glOrtho() lets you specify a orthographic viewing transformation

 Viewport=D
• OpenGL provides a glViewport() routine to set the viewport


