Perspective Projections
CS 442/452

September 17, 2008

Perspective Projection onto View Plane

Z= .
0 view

plane (x,y,2)

(X"y"'d)

eye ertl

Perspective Transformation

e Our perspective transformation is not linear (we can
not describe it with a (simple) matrix).

e \We exploit the use of homogeneous coordinates

(z,y,z,w) = (z/w,y/w,z/w,1) (w # 0).
e \We then create the following perspective matrix
[xd | (d 0O 0 O]

x
yd | |0 d O O Y
zd | |0 0 d O z
—Z 00 -1 0] |1]

After transforming our point, we perform a homo-
geneous perspective division:

—xd —yd
(ZEd,yd,Zd, _Z) H(- y Y 7_d7 1)

< <

Loss of Depth Information

"d 0 0 0][ax] [ad] —2d
0Od 0 O y|_|vd| | —gd
O 0O d O z zd —d
00 -1 0] | 1] | —2 | 1

e Our perspective matrix is (unfortunately) singular
(obvious from column of Q's).

e Matrix is not invertible (3-D objects flatted to 2-D).

e Depth information is lost (we need depth informa-
tion for visibility sorting).

An Invertible Perspective Matrix

We alter our perspective transformation by choosing
some non-zero values for a and b and defining the fol-

lowing transformation:

"d 0 0 077
0d 0 O
00 a b
00 -1 0]

Relative depth information will be preserved in the third
component as a (non-linear) function f of the true

depth z:

R N 8

b

f(z) = —a — ~

—xd

Near and Far Clipping Planes

The user specifies the distance N > 0 to the near clipping plane
and the distance F' > N to the far clipping plane.

z=0 z=-N z=-F

m

view cone

eye !

We choose a and b so that the near and far planes are mapped to
—1 and +1 respectively:

b
N)=—at+—~ = _1
b
f(_F)_——a‘l‘F = +1
Fhus we get a = —XEE and » = =208

F—N F—-N -

Perspective View Volume

w

far
plane

view

volume > aspect ratio
(truncated pyramid) a=wh=W/H

The simplest (and most common) perspective transfor-
mation defines the view axis to pierce the center of the
view volume. We warp the truncated pyramid into the
canonical clipping volume (CCV).

(+1,+1,+1)

(-1,-1,-1)

Canonical Clipping Volume

Mapping to CCV Corners

We project onto the w X h near plane as follows:

(200 0 0
o 2 0 0
F4+N —-2NF
0 0 - F—-N F-N
0 0 -1 0

RN 8
|

After perspective division we get

/
T

/

Y

Note that the points (+w/2,£h/2,—N) get mapped to the points
(£1,+£1,—1). Although its not obvious by inspection, the points
(xW/2,£W/2,—F) get mapped to the points (£1,4+1,41), where

—2Nzx

wz
—2Ny

hz

2N,

2%
F—I—N N, —I-

—Z

2NF

W and H are the corresponding dimensions of the far plane.

Field of View and Aspect Ratio

We can solve for the 2N/h term based on the verti-
cal field of view angle 6. The 2H/h term then can be
determined from the desired aspect ratio a = w/h :

h/2

0/2

N = g cot(6/2)

—— = cot(6/2)
2N 2N _ cot(§/2)

w ah a

Perspective Projection Transformation

[cot(0/2)/a 0 0 0

0 cot(6/2) O 0
Ppersp(eaavNaF) — 0 0 F+N 2NF
N—-F N-F

i 0 0 —1 0

6 . field of view angle along the vertical axis
— Large for ‘fish-eye” lens.
— Small for ‘“telephoto’” lens.

a . aspect ratio of projection window

— Often chosen to match the aspect ratio of the
viewport (else spheres are warped into ellipsoids).

N > 0 : distance to the near clipping plane
F > N: distance to the far clipping plane

gluPerspective(fovy, aspect, zNear, zFar)

Here is an example that initializes the OpenGL projec-
tion matrix with a perspective transformation that uses
0 = 40°, o = 1, N = hither, and F = yon.

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
gluPerspective(40.0, 1.0, hither, yon);

e zNear must be strictly positive (not too close to 0).
e zFar must be greater than zNear but not overly so.

e Wisdom on how to choose these will be revealed
when we talk about z-buffering.

Perspective View Frustum
glFrustum

-

A more general specification of a perspective projection transfor-
mation (view pyramid not necessarily symmetric about view axis).
The near plane becomes the view plane where the boundaries of
a rectangle control the shape of the pyramid.

- oN -
2N 0 0 0
_ | o # o0 0
Ppersp(LyRyByTy N, F) — 0 0 __F+N —2NF
F—N F—N
0 0 —1 i

