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Perspective Projection onto View Plane
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Perspective Transformation

e Our perspective transformation is not linear (we can
not describe it with a (simple) matrix).

e \We exploit the use of homogeneous coordinates

(z,y,z,w) = (z/w,y/w,z/w,1) (w # 0).
e \We then create the following perspective matrix
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After transforming our point, we perform a homo-
geneous perspective division:
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Loss of Depth Information
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e Our perspective matrix is (unfortunately) singular
(obvious from column of Q's).

e Matrix is not invertible (3-D objects flatted to 2-D).

e Depth information is lost (we need depth informa-
tion for visibility sorting).



An Invertible Perspective Matrix

We alter our perspective transformation by choosing
some non-zero values for a and b and defining the fol-

lowing transformation:
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Relative depth information will be preserved in the third
component as a (non-linear) function f of the true

depth z:
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Near and Far Clipping Planes

The user specifies the distance N > 0 to the near clipping plane
and the distance F' > N to the far clipping plane.
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We choose a and b so that the near and far planes are mapped to
—1 and +1 respectively:
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Perspective View Volume
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The simplest (and most common) perspective transfor-
mation defines the view axis to pierce the center of the
view volume. We warp the truncated pyramid into the
canonical clipping volume (CCV).
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Mapping to CCV Corners

We project onto the w X h near plane as follows:
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After perspective division we get

/
T

/

Y

Note that the points (+w/2,£h/2,—N) get mapped to the points
(£1,+£1,—1). Although its not obvious by inspection, the points
(xW/2,£W/2,—F) get mapped to the points (£1,4+1,41), where
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W and H are the corresponding dimensions of the far plane.




Field of View and Aspect Ratio

We can solve for the 2N/h term based on the verti-
cal field of view angle 6. The 2H/h term then can be
determined from the desired aspect ratio a = w/h :
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Perspective Projection Transformation
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6 . field of view angle along the vertical axis
— Large for ‘fish-eye” lens.
— Small for ‘“telephoto’” lens.

a . aspect ratio of projection window

— Often chosen to match the aspect ratio of the
viewport (else spheres are warped into ellipsoids).

N > 0 : distance to the near clipping plane
F > N: distance to the far clipping plane




gluPerspective(fovy, aspect, zNear, zFar)

Here is an example that initializes the OpenGL projec-
tion matrix with a perspective transformation that uses
0 = 40°, o = 1, N = hither, and F = yon.

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
gluPerspective(40.0, 1.0, hither, yon);

e zNear must be strictly positive (not too close to 0).
e zFar must be greater than zNear but not overly so.

e Wisdom on how to choose these will be revealed
when we talk about z-buffering.



Perspective View Frustum
glFrustum
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A more general specification of a perspective projection transfor-
mation (view pyramid not necessarily symmetric about view axis).
The near plane becomes the view plane where the boundaries of
a rectangle control the shape of the pyramid.
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