
Looking down the z-axis (arrow).  
We will project geometry onto a
“near plane” (black rectangle), 
which corresponds to the screen.

Consider, how this projection 
affects x and y coordinates of 
rendered geometry....
 

x and y values are simply scalar
multiples of their original values!



So let’s try to figure out how
much scaling occurs!

In OpenGL, the eye is at (0,0,0), 
and we specify the distance to 
the projection plane (i.e., the 
“near”plane).

Use simple, high school geometry!
               (similar triangles)
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There’s two problems with this matrix!

         (Q: Anyone have ideas what?)

Problem 1)   It throws away all depth information in the scene!  (z-values)
    This means there’s absolutely no way to tell which object
   is on top in any pixel where multiple objects overlap.

Problem 2)  It doesn’t guarantee all geometry in the volume will project
   into the unit cube (where x, y, z ∈ [-1...1] ).  Remember, we 
   want values in this range after projection (”normalized 
   device coordinates”).

a 0 0 0
0 b 0 0
0 0 c d
0 0 e 0

(        )
In order to address this problem we start with a matrix of this form:

and fill in the values for a, b, c, d, and e.  Note, the added non-zero entry d
allows some preservation of depth differentials.  We need not add other
non-zero entries in the 3rd row, since the final z-value should not depend
on the input x any values!



a 0 0 0
0 b 0 0
0 0 c d
0 0 e 0

(        )So our desired 
matrix is of this 
form:

First, realize this is a system of
4 equations with 5 unknowns.
(We’ll get a set of solutions instead of a unique one!)

      Fix this by setting e = -1.

Then, let’s consider what happens when we apply this matrix to important
points.

Q:  If we apply the projection matrix to (0,0,-n,1) with this matrix, what should 
      be the z-value of the projected point??   (Remember the projection matrix
     leaves points in “normalized device coordinates,” where x,y,z ∈ [-1...1].)
 

A:  (0,0,n,1)  should map to (0,0,-1,1) in normalized device coordinates!

Q:  If we apply the projection matrix to (0,0,-f,1) with this matrix, what should 
      be the z-value of the projected point??   
 

A:  (0,0,f,1)  should map to (0,0,1,1) in normalized device coordinates!
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So,  -cn+d = -n,  and -cf+d = f.   Subtract the second from the first:  -c(n-f ) = -n-f

Thus, c = (n+f )/(n-f ).    

Also,  -c + d/n = -1,  and -c + d/f = 1.   Subtract the second from the first:
d/n - d/f = -2    (df-nd)/(nf ) = -2.   Thus, d = 2nf/(n-f ).



Now, let’s tackle a and b.

We can do the same thing, 
plug in important points that
project to the boundaries of 
the near plane!

To find what this point is, 
consider the view on the left
(and the simplified view below).
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This shows us that b = 1/tan(θ/2).   Simplifying, and calling θ by the name 
(fovy) we pass it to gluPerspective() with, we get:   b = cot(       )
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Basic trigonometry says:
      y = n tan(θ/2),

So the point (0, n tan(θ/2), -n, 1) is a
boundary condition, and should project
to (0, 1, -1, 1)
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For computing a, the situation 
and math is almost identical....

Except the angle θ might be
different if the window’s aspect
ratio is not 1 (i.e., if the window 
is not square)!

Remember the aspect ratio is:
              width / height
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This shows us that a = 1/(artan(    )).   Simplifying, we get:  
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Remember:  y = n tan(      ),  this means:  x = n tan(     ),

But since we don’t have fovx (remember we specify only fovy when calling
gluPerspective()), we can compute it based on fovy and the aspect ratio (ar)

It turns out that the boundary point is x = n ar tan(       ).   So, our boundary 
point is:         (n ar tan(       ), 0, -n, 1)
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